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Outline

O Introduction (20min)

O Invariance-guided Graph Representation Learning (40min)

O Information-theoretic Graph Representation Learning (40min)
O Geometry-guided Graph Representation Learning (40min)

O Advanced Directions (30min)

O QA



Networks/Graphs

Logistics

Biology

Social Network

Transaction Knowledge Graphs

Internet of Things
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Graph Tasks

4

[Descriptive and Predictive}

Node classification
Link prediction

i Graph Classification
Node importance
Community detection
Network distance

Network evolution



Graph Applications in Computer Science
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Data Mining Multimedia

Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling, EMNLP 2017
Neural Motifs: Scene Graph Parsing with Global Context, CVPR 2018
Learning by Abstraction: The Neural State Machine. NeurlPS 2019
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Graph Applications beyond Computer Science
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Material Science Physical Simulation

Graph is a common and general tool for modeling relational data!




Graph Machine Learning is Challenging
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Graph Representation Learning (GRL)

G=(V)

Vector Space
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The ultimate goal of Graph Representation Learning

| Descriptive and Predictive
s Y N
S b Node classification
T Link prediction

Graph Classification
Node importance
Community detection
Network distance

v

Network evolution
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in the Vector Space



Requirement of Graph Representation Learning

[ Goal: Support various graph analytical tasks ]
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[ Reflect graph ] [Maintain graph}

structure Properties
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GRL should preserve essential characteristics of graphs




However, GRL is usually imperfect ...

| cannot learn
sufficiently meaningful embed

representation

GRL Model1
Training Testing | have learned well on
é:} the training data, but 'Fﬁ'
even a slight perturbation =
in the data makes me fail GRL Model2

)

| have trouble
maintaining the
inherent graph

GRL Model3 characteristics YL 3

We generally refer to these phenomenon as “distortion”




What Causes Distortion in Graph Representation?

Graph Data
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Spurious relationship
Imbalance (label, topology)

Noise (label, structure)

GRL Models Representation

Over-smoothing Limited dimensionality

Over-squashing Representation bias

Structural simplification Low discriminability

Il Distortion !!




Understanding and Addressing Distortion

Graph Data

GRL Models

Representation

Low-Distortion Graph Representation Learning

Invariance-guided
Graph Representation
Learning

Information-theoretic
Graph Representation
Learning

Geometry-guided
Graph Representation
Learning




Understanding and Addressing Distortion

[ @ Invariance-guided } [ @ Information-theoretic} [ @ Geometry-guided }

Distinguish the invariant/variant structures/features in the graph data
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4 Invariant Parts [ G ol Variant Parts )
 Stability/Causal * Environments
* Generalization » Short-cuts or noises
e Core information * Auxiliary information
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e
Understanding and Addressing Distortion

[ @ Invariance-guided } [ @ Information-theoretic] [ @ Geometry-guided ]

Distortion: Learned representations fail to fully capture invariant features,

which makes them struggle with distribution shift problem.
O E.g., train on small graphs, test on large graphs.

O Mislead by spurious correlations.
P A AP

Train Graph Test
Model

Distinguish invariant and variant structures/features under distribution shift
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Reduce distortion and improve generalization




Understanding and Addressing Distortion

[ @ Invariance-guided }[@Information-theoretic}[ @ Geometry-guided }

Analyze and extract information from complex node features and

irregular structure

Entropy MI & Div Principle
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Analyze ‘h'-'_ gaphs Distributional differences
characteristics across objectives using Div Information Constramt

Univariate — Multivariate; Single — Multi-dimensional Constraints




Understanding and Addressing Distortion

[ @ Invariance-guided }[@Information-theoretic}[ @ Geometry-guided }

Distortion: The model loses information during encoding, message

passing, or decoding
O Message passing causes feature information loss

O Structure simplification causes structural information loss

E E Information E \ / E
E Preserve? Discard? E

Formulate the trade-off between information acquisition and compression in graph learning

A

Reduce distortion and improve interpretability




Understanding and Addressing Distortion

[ @ Invariance-guided } [ @ Information-theoretic } [ @ Geometry-guided }

Extend graph learning to the continuous Riemannian /discrete curvature space

Ricci
Flow
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E E Continuous Riemannian space
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Discrete curvature-based space
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Understanding and Addressing Distortion

[ @ Invariance-guided } [ @ Information-theoretic } [ @ Geometry-guided }

Distortion: The embedding space mismatches the geometric relations
O Mapping to Euclidean space without considering graph characteristics

O Insufficient information storage capacity in low-dimensional space
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(a) Original structure. (b) Euclidean latent space. (c) Hyperbolic latent space.

Learn representations in non-Euclidean spaces (Riemannian space & curvature-based space)

%

Reduce distortion and improve expressiveness




Advanced Directions

Graph Foundation Model Graph RAG

* Inspired by LLMs, GNNs with » Construct knowledge graphs

cross-task zero-shot generalization » Capture complex relations across

« One pre-train, use everywhere documents and across facts

* Scaling Law « Enhance multi-hop reasoning

Graph World Model




Now, let’s move towards

low-distortion graph representation!



