

IJCAI 2025 Tutorial

Towards Low-Distortion Graph Representation Learning

2025.08.29

Ziwei Zhang¹, Qingyun Sun¹, Xingcheng Fu², Haonan Yuan¹

¹Beihang University ²Guangxi Normal University

Outline

- □ Introduction (20min)
- Invariance-guided Graph Representation Learning (40min)
- Information-theoretic Graph Representation Learning (40min)
- Geometry-guided Graph Representation Learning (40min)
- Advanced Directions (30min)

Networks/Graphs

Social Network

Biology

Logistics

Internet of Things

Transaction

Knowledge Graphs

Graph Tasks

Descriptive and Predictive

- Node classification
- Link prediction
- Graph Classification
- Node importance
- Community detection
- Network distance
- Network evolution
- ...

Graph Applications in Computer Science

Natural Language Processing

Data Mining

Computer Vision

Multimedia

Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling, *EMNLP 2017*Neural Motifs: Scene Graph Parsing with Global Context, *CVPR 2018*Learning by Abstraction: The Neural State Machine. *NeurIPS 2019*

Graph Applications beyond Computer Science

Structural Engineering

Material Science

Drug repurposing for Covid-19

Physical Simulation

Graph is a common and general tool for modeling relational data!

Graph Machine Learning is Challenging

Graph Representation Learning (GRL)

The ultimate goal of Graph Representation Learning

in the Vector Space

Requirement of Graph Representation Learning

GRL should preserve essential characteristics of graphs

However, GRL is usually imperfect ...

We generally refer to these phenomenon as "distortion"

What Causes Distortion in Graph Representation?

Graph Data

GRL Models

Representation

Spurious relationship

Imbalance (label, topology)

Noise (label, structure)

. . .

Over-smoothing

Over-squashing

Structural simplification

. . .

Limited dimensionality

Representation bias

Low discriminability

. . .

!! Distortion !!

Graph Data

GRL Models

Representation

Low-Distortion Graph Representation Learning

Invariance-guided

Graph Representation Learning Information-theoretic
Graph Representation
Learning

Geometry-guided
Graph Representation
Learning

- 1 Invariance-guided
- 2 Information-theoretic
- ③ Geometry-guided

Distinguish the invariant/variant structures/features in the graph data

- 1 Invariance-guided
- 2 Information-theoretic
- **3** Geometry-guided

Distortion: Learned representations **fail** to fully capture **invariant features**, which makes them struggle with **distribution shift** problem.

- E.g., train on small graphs, test on large graphs.
- Mislead by spurious correlations.

Distinguish invariant and variant structures/features under distribution shift

Reduce distortion and improve generalization

- 1 Invariance-guided
- 2 Information-theoretic
- ③ Geometry-guided

Analyze and extract information from complex node features and irregular structure

- 1 Invariance-guided
- 2 Information-theoretic
- **3** Geometry-guided

Distortion: The model **loses information** during encoding, message passing, or decoding

- Message passing causes feature information loss
- Structure simplification causes structural information loss

Formulate the trade-off between information acquisition and compression in graph learning

Reduce distortion and improve interpretability

- ① Invariance-guided
- 2 Information-theoretic
- ③ Geometry-guided

Extend graph learning to the continuous Riemannian /discrete curvature space

Discrete curvature-based space

- 1 Invariance-guided
- 2 Information-theoretic
- ③ Geometry-guided

Distortion: The embedding space **mismatches** the geometric relations

- ☐ Mapping to Euclidean space without considering graph characteristics
- Insufficient information storage capacity in low-dimensional space

Learn representations in non-Euclidean spaces (Riemannian space & curvature-based space)

Reduce distortion and improve expressiveness

Advanced Directions

Graph Foundation Model

- Inspired by LLMs, GNNs with cross-task zero-shot generalization
- One pre-train, use everywhere
- Scaling Law

Graph RAG

- Construct knowledge graphs
- Capture complex relations across documents and across facts
- Enhance multi-hop reasoning

Graph World Model

Now, let's move towards low-distortion graph representation!