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 In dynamic and open environments, distribution shifts naturally occur

Graph Distribution Shifts

Graph distribution shifts become a major factor for distortion
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 Why existing GRL fail to handle distribution shifts and achieve OOD generalization?

 Answer: spurious correlations

 GRL tends to exploit statistical correlations in the training set 

 But spurious correlations cannot generalize under distribution shifts

Main Challenge for Handling Distribution Shifts

computer vision graphs

Picture credit: Convolutional Networks on Graphs for Learning Molecular Fingerprints, NeurIPS 2015;

                           Discovering Invariant Rationales for Graph Neural Networks, ICLR 2022
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 How to get rid of spurious correlations?

 Main idea: distinguish invariant and variant subgraphs

 Invariant: relationships with labels are stable under distribution shifts

 Variant: the complement of invariant, e.g., environments

Invariance-guided Graph Representation Learning

Invariance

OOD Generalization

Variance

Environment/Domain

Information
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Finding Invariance

Picture credit: Kipf and Welling (GCN, ICLR 2017), Jure Leskovec (CS224w, Stanford Univ.)

How to find invariance in the 

vector space?

How to find invariance in the 

topology space?

How to find invariance in GNN 

architectures?
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Graph Invariant Learning in the Vector Space

 OOD-GNN (IEEE TKDE’22)

 StableGNN (TPAMI’23)

 IDGCL (IEEE TKDE’22)

 OOD-GCL (ICML’24)



 How to get rid of spurious correlations in node representations?

 Main idea: decorrelations

 Remove the statistical dependence of truly predictive (causal) information 

and spurious (non-causal) information by sampling reweighting, i.e., assign 

each sample (graph) a weight

 More theoretical backgrounds: direct confounder balancing  

Out-of-Distribution Generalized GNN (OOD-GNN)

C S

Y G

Structural Causal Model

OOD-GNN: Out-of-Distribution Generalized Graph Neural Network. TKDE, 2022.
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 In practice: encourage to eliminate statistical dependence of all dimensions

 Since we do not know which ones are causal and spurious 

 To get rid of spurious correlations, we expect

 We adopt Hilbert-Schmidt Independence Criterion (HSIC) measured as: 

 However, calculating HSIC is intractable. We adopt a practical version as:

where 𝑓 ⋅ and 𝑔 ⋅  are the random Fourier features function:

OOD-GNN: HSIC

OOD-GNN: Out-of-Distribution Generalized Graph Neural Network. TKDE, 2022.

min
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OOD-GNN: Optimization

OOD-GNN: Out-of-Distribution Generalized Graph Neural Network. TKDE, 2022.

 Optimization objectives: jointly optimize weights
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 Setup: 14 graph datasets, various kinds of domains/shifts

 Results:

OOD-GNN: Experiments

OOD-GNN: Out-of-Distribution Generalized Graph Neural Network. TKDE, 2022.
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StableGNN
 OOD-GNN: does not delve into complicated graph structure 

 Main idea: encode and remove subgraph-level spurious correlations

 Employ graph pooling layers to learn high-level graph representation
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Generalizing Graph Neural Networks on Out-of-Distribution Graphs, TPAMI 2023



 Except the reweighting, OOD-GNN performs like a normal GNN

 The formation of a graph is typically driven by many entangled latent factors

→ Can we disentangle latent factors in the message passing?

 The graph labels can be extremely scarce for many graph datasets/scenarios

→ Can we design self-supervised learning frameworks?

Independence-promoted Disentangled Graph 
Contrastive Learning (IDGCL)

Disentangled Graph Contrastive Learning with Independence Promotion. TKDE, 2022.
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 Key idea: disentangled graph encoder + factor-wise contrastive learning + HSIC

 Each channel for one disentangled factor

IDGCL: Method

Disentangled Graph Contrastive Learning with Independence Promotion. TKDE, 2022.
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IDGCL: Method

Disentangled Graph Contrastive Learning with Independence Promotion. TKDE, 2022.

 Graph Augmentation

 Four types of strategies: node dropping, edge perturbation, attribute masking, subgraph sampling

 Reflect diverse aspects behind graphs, can be directly extended

 Self-supervised loss: 
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IDGCL: Method

Disentangled Graph Contrastive Learning with Independence Promotion. TKDE, 2022.

 Factor-wise message-passing

 First, a shared GNN for a few layers 

 Then learn 𝐾 GNNs with independent parameters

 Each channel only captures one hidden factor
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IDGCL: Method

Disentangled Graph Contrastive Learning with Independence Promotion. TKDE, 2022.

 Factor-wise contrastive learning

 Consider multiple latent factors

 Infer latent factors by 𝐾 prototypes:

 Subtask under each latent factor:

 Statistical Independence regularizer:

 Overall objective function:  
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IDGCL

MVGRL GraphCL

Each channel captures one latent factor

Disentangled Graph Contrastive Learning with Independence Promotion. TKDE, 2022.

 Visualizations for representations 

IDGCL: Experiments
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 Can we move a step forward to the “pre-training, fine-tuning” paradigm?

 Main idea: learn disentangled invariant graph representation for K latent clusters

 Can be used as pre-training and easily fine-tuned for downstream tasks

OOD-GCL

Disentangled Graph Self-supervised Learning for Out-of-Distribution Generalization. ICML, 2024.
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Recap: Graph Invariant Learning in the Vector Space

 OOD-GNN (IEEE TKDE’22): sample reweighting for decorrelation

 StableGNN (TPAMI’23): pooling for subgraph-level decorrelation

 IDGCL (IEEE TKDE’22): self-supervised decorrelation

 OOD-GCL (ICML’24): “pre-training, fine-tuning” decorrelation



Finding Invariance

Picture credit: Kipf and Welling (GCN, ICLR 2017), Jure Leskovec (CS224w, Stanford Univ.)

How to find invariance in the 

vector space?

How to find invariance in the 

topology space?

How to find invariance in GNN 

architectures?
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Graph Invariant Learning in the Architecture Space

 GRACES (ICML’22)

 OMGNAS (AAAI’24)

 DCGAS (AAAI’24)

 CARNAS (KDD’25)



 A fixed architecture on the training data may fail to generalize

 Solution: customize architectures for different graph instances

29

Challenge of Fixed Architectures



  Main idea: customize a unique GNN architecture for each graph 

instance to handle distribution shifts 

GRACES: Graph Neural Architecture Search under 
Distribution Shifts

Graph Neural Architecture Search under Distribution Shifts. ICML, 2022.
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 Goal: learn a vector representation for each graph to reflect its characteristics 

 Challenge: preserve diverse properties of the original graph

 Method: self-supervised disentangled graph encoder

 Encoder: disentangled GNN

 Supervised loss: the downstream task

 Self-supervised loss: node degree as regularization

GRACES: Graph Encoder
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 Goal: customize an architecture based on the graph representation

 Assumption: graphs with similar characteristics need similar architectures

 Method: prototype based architecture customization

 Probabilities of choosing operations:

 Regularizer to avoid mode collapse:

GRACES: Architecture Customization 
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GRACES: Learning Architecture Parameters

 Goal: learn parameters for the customized architectures

 Method: customized super-network 

 Loss functions: 
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GRACES: Experiments

Synthetic OOD graph datasets Real-world OOD graph datasets

Customization of architectures
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DCGAS: Data-Augmented Curriculum GraphNAS

Data-Augmented Curriculum Graph Neural Architecture Search under Distribution Shifts. AAAI, 2024

  Main idea: GRACES only focus on searched architectures

 Training data can be limited        → can we augment existing graph?

 Importance of graph is different   → can we design clever learning strategy?
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  Embedding-guided data generator: generating graphs with similar structures

  Embedding guidance + discrete graph diffusion model

DCGAS: Data-Augmented Curriculum GraphNAS

Data-Augmented Curriculum Graph Neural Architecture Search under Distribution Shifts. AAAI, 2024
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DCGAS: Data-Augmented Curriculum GraphNAS

Data-Augmented Curriculum Graph Neural Architecture Search under Distribution Shifts. AAAI, 2024

 Two-factor uncertainty-based curriculum weighting: schedule the training

 Measures the uncertainty of the architecture performance on data

 Higher uncertainties indicate higher weights
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Dress Trousers Baby

		

		 		

Shoes

		

		 	

Blue Dress

Red Dress

Black Dress

Distribution Shift on Singlemodal Domain (Color Shift)

Distribution Shift on Multimodal Domain

 OOD Problem of multimodal graph

OMGNAS: Multimodal GraphNAS

Multimodal Graph Neural Architecture Search Under Distribution Shifts. AAAI, 2024.
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OMGNAS: Multimodal GraphNAS

Multimodal Graph Neural Architecture Search Under Distribution Shifts. AAAI, 2024.
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 Main idea: decorrelate multimodal graph features, then customize



 Combine customization idea with invariance principle 

CARNAS: Causal-aware GraphNAS

Causal-aware Graph Neural Architecture Search under Distribution Shifts. KDD, 2025.
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 Disentangled Causal Subgraph Identification

CARNAS: Causal-aware GraphNAS

Causal-aware Graph Neural Architecture Search under Distribution Shifts. KDD, 2025.

 Goal: capture different latent factors and split the 

input graph instance causal/non-causal subgraph

 Learnable disentangled GNN layers

 Edge importance mask

 Causal/non-causal subgraphs
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 Graph Embedding Intervention

CARNAS: Causal-aware GraphNAS

Causal-aware Graph Neural Architecture Search under Distribution Shifts. KDD, 2025.

 Goal: do interventions in 

the latent space

 Learn representation

 Intervention

 Architecture customization

 Joint Optimization
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Recap: Graph Invariant Learning in the Architecture Space

 GRACES (ICML’22): customize architectures

 OMGNAS (AAAI’24): data augmentation + curriculum

 DCGAS (AAAI’24): multimodal decorrelation

 CARNAS (KDD’25): capturing invariant parts



Finding Invariance

Picture credit: Kipf and Welling (GCN, ICLR 2017), Jure Leskovec (CS224w, Stanford Univ.)

How to find invariance in the 

vector space?

How to find invariance in the 

topology space?

How to find invariance in GNN 

architectures?
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Graph Invariant Learning in the Topology Space

Static graphs: 

 GIL (NeurIPS’22)

 DIR (ICLR’22)

 NIL (ACM TOIS’23)

 GOODFormer (arXiv’25)

Dynamic graphs:  

 DIDA (NeurIPS’22)

 SILD (NeurIPS’23)

 EAGLE (NeurIPS’23)



 Previous methods implicitly learn invariant/variant graphs

 Can we explicitly distinguish invariant and variant subgraphs?

 Challenge: 

 There is no labels for invariant and variant subgraphs

 Variant and invariant subgraphs are highly entangled

Invariance-guided Graph Learning
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 Key Idea: mutual promotion of invariant learning and environment (variant) inference

 Invariant subgraphs: for predicting labels

 Variant subgraphs: for providing environments

Learning Invariant Graph Representations under Distribution Shifts. NeurIPS, 2022.

GIL: Method
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GIL: Method
 Goal: learn a mask to separate invariant and variant subgraphs

 Challenge: need to handle graphs of various sizes and be inductive

 Proposed method: GNN with top-t pooling
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GIL: Method
 Assumption: the variant subgraphs capture environment-discriminative features

 Challenge: there is no ground-truth environment labels

 Proposed method: cluster variant subgraphs infer environments, e.g., k-means
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GIL: Method
 Goal: find an invariant subgraph generator

 Optimization: 

 Invariance regularizer: 
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 We prove that the maximal invariant subgraph generator can achieve OOD optimal 

 Several assumptions:

 We prove that GIL maintains permutation invariance.

 We show that the time complexity of GIL is on par with the existing GNNs  

 Time Complexity: 𝑂( 𝐸 𝑑 + |𝑉|𝑑2), 𝐸 and 𝑉 are the edge and node number.

Learning Invariant Graph Representations under Distribution Shifts. NeurIPS, 2022.

GIL: Theory
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 OOD Generalization on real-world datasets

 Ogbg-molhiv

Learning Invariant Graph Representations under Distribution Shifts. NeurIPS, 2022.

GIL: Experiments

Compatible with various backbone GNNs 

and a new SOTA on OGB leaderboard!
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 Showcase on Spurious-Motif datasets

 Showcases on Graph-SST2 (human-understandable)

Capture the subgraphs with

positive/negative semantics

Learning Invariant Graph Representations under Distribution Shifts. NeurIPS, 2022.

GIL: Experiments
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 Main idea: minimize interventional risks to find invariant (causal) features

 Formally, from a causal perspective

                                                         Input graph 𝐺

                                                         Causal part 𝐶

           Non-causal part 𝑆

                                                         Ground-truth label 𝑌

Discovering Invariant Rationale
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Discovering Invariant Rationales for Graph Neural Networks. ICLR, 2022.



 The causality ladder

   

Discovering Invariant Rationale
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Judea Pearl

2011 Turing Award



 Main idea: minimize interventional risks to find invariant (causal) features

 Rationale generator: split the input graph into causal/non-causal subgraphs

 Distribution Intervener: create interventional distributions by randomly replacing 

the complement of the causal subgraph

 Optimization: minimize variance of interventions 

Discovering Invariant Rationale
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Discovering Invariant Rationales for Graph Neural Networks. ICLR, 2022.



Node Invariant Learning (NIL)
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Invariant Node Representation Learning under Distribution Shifts with Multiple Latent Environments. ACM TOIS, 2023.

 For graph-level tasks, different graphs can be considered samples

→ how to generalize to node/link-level tasks?

 Basic idea: the receptive field of each node is an ego-subgraph

 Treat node classification as ego-subgraph classifications

 Note: these subgraphs are dependent, but can be assumed to satisfy 

conditional independence, i.e.,  



 Goal: mask invariant/variant graph structures and node features

NIL: Framework

Invariant Node Representation Learning under Distribution Shifts with Multiple Latent Environments. ACM TOIS, 2023.
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NIL: Framework

Invariant Node Representation Learning under Distribution Shifts with Multiple Latent Environments. ACM TOIS, 2023.
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 Goal: infer environments

 Contrastive modularity-based clustering

 Based on homophily assumption



NIL: Framework

Invariant Node Representation Learning under Distribution Shifts with Multiple Latent Environments. ACM TOIS, 2023.
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 Goal: encourage to only use invariant parts for prediction



 How to tackle the OOD generalization problem of graph Transformers?

 Challenges: 

 The classical self-attention cannot guarantee sharpness.

 The dynamically evolving invariant subgraph leads to prohibitive computational 

complexity for positional and structural encoding.

Graph OOD Transformer (GOODFormer)

Invariant Graph Transformer for Out-of-Distribution Generalization. arXiv, 2025.
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GOODFormer: Method
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 Key Idea: design attention mechanisms and postional and structural 

encodings based on graph invariant learning principles

 Attention: how to guarantee sharpness

 Positional and structural encoding: how to maintain efficiency and expressiveness 

Invariant Graph Transformer for Out-of-Distribution Generalization. arXiv, 2025.



GOODFormer: Method
 Goal: separate invariant and variant subgraphs for graph Transformer

 Proposed method:

 Two attentions for invariant/variant subgraphs 

 Test-time training: minimize entropy difference between training and test data
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 Attn,  = Softmax    𝑉, Attn,  = Softmax −   𝑉

Invariant Graph Transformer for Out-of-Distribution Generalization. arXiv, 2025.



GOODFormer: Method

 Goal: Capture the positional/structural information of dynamically evolving subgraphs

 Learnable MPNN-based encoder instead of hand-crafted encoding

 Distillation loss to transfer knowledge from full-graph to subgraph encodings
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Invariant Graph Transformer for Out-of-Distribution Generalization. arXiv, 2025.



 Many graphs are dynamic in nature

 Distribution shifts can be spatio-temporal

Invariant Learning for Dynamic Graphs

Picture credit: ROLAND: graph learning framework for dynamic graphs, KDD 2022

73



 Key Idea: finding invariant/variant spatial-temporal patterns and apply intervention

 Intervention: from causal theory to get rid of spurious correlation

DIDA: Method

Dynamic Graph Neural Networks Under Spatio-Temporal Distribution Shift. NeurIPS, 2022.
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DIDA: Method

DIDA: Method

Dynamic Graph Neural Networks Under Spatio-Temporal Distribution Shift. NeurIPS, 2022.

 Goal: separate invariant and variant spatial-temporal subgraphs

 Proposed method: disentangled dynamic graph attention network

  First calculate masks

 Then calculate message-passing

 Updating node representation
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DIDA: Method

DIDA: Method

Dynamic Graph Neural Networks Under Spatio-Temporal Distribution Shift. NeurIPS, 2022.

 Goal: create intervened distributions by sampling and reassembling variant patterns
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DIDA: Method

DIDA: Method

Dynamic Graph Neural Networks Under Spatio-Temporal Distribution Shift. NeurIPS, 2022.

 Goal: focus on invariant patterns using intervened distributions

 Original objective:

 Practical version: intervention-invariant regularization 
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 Synthetic datasets

 Real-world datasets

DIDA: Experiments

Dynamic Graph Neural Networks Under Spatio-Temporal Distribution Shift. NeurIPS, 2022.
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 Showcases:

 Ablation studies:

DIDA: Experiments

Dynamic Graph Neural Networks Under Spatio-Temporal Distribution Shift. NeurIPS, 2022.
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 However, in many cases, distribution shift may be unobservable in the 

time domain while observable in the spectral domain

Spectral Invariant Learning for Dynamic Graphs (SILD)

Spectral Invariant Learning for Dynamic Graphs under Distribution Shifts. NeurIPS, 2023.

 Motivation example: A simple dynamic graph with two frequency 

components (having variant & invariant relationship with the labels)

t=1 t=2 t=T

…
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Spectral Invariant Learning for Dynamic Graphs under Distribution Shifts. NeurIPS, 2023.

SILD: Framework
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EAGLE: Environment-Aware dynamic Graph Learning

Environment-aware dynamic graph learning for out-of-distribution generalization. NeurIPS, 2023.

 Key Idea: investigate environments carefully 

 Find the spatio-temporal invariant patterns then apply causal inference to decorrelations
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Recap: Graph Invariant Learning in the Topology Space

Static graphs: 

 GIL (NeurIPS’22): cluster variant subgraphs into environments 

 DIR (ICLR’22): intervention to capture invariance/variance

 NIL (ACM TOIS’23): generalize to node-centric tasks

 GOODFormer (arXiv’25): invariance for attention and position encoding

Dynamic graphs:  

 DIDA (NeurIPS’22): intervention for spatio-temporal invariance

 SILD (NeurIPS’23): invariance in the spectral domain

 EAGLE (NeurIPS’23): model invariance from environments



Take-Home Message

Invariance-guided 

Graph 

Representation 

Learning

Encourage 
Independence and 
Disentanglement 

in representations

Customize 
architectures that 

can generalize

Finding invariant 
and variant graph 

structures
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OOD-GNN (IEEE TKDE’22)
StableGNN (IEEE TPAMI’23)
IDGCL (IEEE TKDE’22)
OOD-GCL (ICML’24)

GRACES (ICML’22)
OMGNAS (AAAI’24)
DCGAS (AAAI’24)
CARNAS (KDD’25)

GIL (NeurIPS’22) 
DIR (ICLR’22)
NIL (ACM TOIS’23)
GOODFormer (arXiv’25) 

DIDA (NeurIPS’22)
SILD (NeurIPS’23)
EAGLE (NeurIPS’23)



Out-Of-Distribution Generalization on Graphs: A Survey. IEEE TPAMI 2025.

Survey

Paper collection: https://github.com/THUMNLab/awesome-graph-ood  
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https://github.com/THUMNLab/awesome-graph-ood
https://github.com/THUMNLab/awesome-graph-ood
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THANK YOU!
https://zw-zhang.github.io

zwzhang@buaa.edu.cn


