

Low-Distortion Graph Representation Learning: An Information-Theoretic Perspective

Qingyun Sun

sunqy@buaa.edu.cn

Beihang University, Beijing, China

Outline:

- Why Information Theory for Graph Learning?
- How to Capture and Leverage Information in Graph?
- What's Next? Future Directions of Information-Theoretic GRL

Information Theory

Claude Elwood Shannon (1916-2001)

Shannon's Model of a Communication System (1948)

- A k-symbol sequence X is mapped by anencoder into an n-symbol input sequence Z
- The received channel output sequence H ismapped by a decoder into an estimate (reconstruction) sequence \hat{X}

Information can be efficiently compressed and transmitted using codes, laying the foundation of Information Theory

A Shared Goal: Minimal Distortion

Shannon's Model of a Communication System

Model of Deep Learning

Information Theory seeks to encode and decode signals with minimal distortion.

Deep Learning similarly aims to extract information from data while preserving it with **minimal distortion**.

Shared Goal:

Compress the input, preserve the core information, and minimize distortion

Information Theory Meets Graph Learning

- Compressing graph data with rich structure and dependencies into embedding vectors inevitably introduces distortion.
- Information Theory provides a principled way to measure, compress, and preserve information in graph data.

Information Theory Meets Graph Learning

How can we achieve low-distortion graph learning?

Let's explore patterns and draw inspiration

from an Information-Theoretic Perspective!

Outline:

- Why Information Theory for Graph Learning?
- How to Capture and Leverage Information in Graph?
- What's Next? Future Directions of Information-Theoretic GRL

How to Capture and Utilize Information? Overview

Entropy

Assess the intrinsic uncertainty and complexity of graph.

MI & Divergence

Capture both interdependencies and variations inherent in learning.

Principle

Offer a unified and general objective for representation learning

How to Capture and Utilize Information? Overview

Entropy

Assess the intrinsic uncertainty and complexity of graph.

MI & Divergence

Capture both interdependencies and variations inherent in learning.

Principle

Offer a unified and general objective for representation learning

Entrop

Classical Entropy

Shannon Entropy

$$H_S(P) = -\sum_i p_i \log p_i$$

Rényi Entropy

$$H_R(P) = \frac{1}{1 - q} \sum_{i} \log \left(\sum_{i} p_i^q \right)$$

von Neumann Entropy $H_{\nu N}(\rho) = -\text{Tr}(\rho \log \rho)$

$$H_{vN}(\rho) = -\mathrm{Tr}(\rho \log \rho)$$

■ Probability-based data)

□ Global information ☐ Symmetry (i.i.d.

Graph-Specific Entropy

Structure Entropy (1-D, 2-D, ...)

von Neumann Graph Entropy

$$H_{vN}(G) = \sum_{i} \frac{\lambda_i}{\text{vol}(G)} \log \frac{\lambda_i}{\text{vol}(G)}$$

- ☐ Structure-oriented ☐ Relation
- **□** Dependency (non information

i.i.d)

	Entropy	Graph Structure Component
Classical Entropy	Shannon Entropy	
	Rényi's q -order Entropy	
	von Neumann Entropy	
Graph-Specific Entropy	von Neumann Graph Entropy	Laplacian matrix eigenvalues
	1-D Structure Entropy	Node degree
	2-D Structure Entropy	Graph node partition
	Edge Entropy	Class of two nodes on the edge
	Körner Graph Entropy	Independent sets
	Residual Entropy	Graph node partition

Leveraging graph structure is key to designing graph-specific entropy

- Undertanding Graph Data: Node Embedding Dimension Selection
 - One of the most fundamental setting method design: Embedding Dimension.
 - Optimal dimension? Minimum Entropy!
 - \rightarrow MGEDE's Idea¹: min attribute/structure entropy \rightarrow min uncertainty \rightarrow optimal dimension

Undertanding Graph Data: Hierarchical Information Extraction

- > MGEDE only uses global information, while SEP1 takes hierarchical information into account
- > 2-D Structure Entropy has an inherent hierarchical structure in the calculation
- \triangleright SEP's Idea: min structure entropy \rightarrow optimal coding tree \rightarrow hierarchical relationships \rightarrow pooling

- Undertanding Graph Data: The entropy is not always minimized
 - > SE-GSL's Idea: max entropy for richer information while min entropy for ordered hierarchy

How to Capture and Utilize Information? Overview

Entropy

Assess the intrinsic uncertainty and complexity of graph.

MI & Divergence

Capture both interdependencies and variations inherent in learning.

Principle

Offer a unified and general objective for representation learning

MI & Divergence

- Mutual Information (MI): quantifying the amount of information transmitted
- Divergence: measuring distribution differences

- Message passing is a fundamental paradigm in graph learning, where controlling information flow is the key.
- Information can be filtered and compressed by capturing the information flow among different views (local ↔ global)

- MI for Information Transmission: local ↔ global
- ➤ **DGI**¹: Maximize MI between local node representations and the global graph representation
- By aligning local and global views, DGI learns embeddings that preserve rich structural and feature information without supervision.
- ➤ DMI²: introducing Feature Mutual Information and Topology-Aware Mutual Information → comprehensively capture the information in graph

Real Summary Vector Readout Corrupted graph

Graphical Mutual Information

- 1. Veličković P, Fedus W, Hamilton W L, et al. Deep Graph Infomax, ICLR 2018.
- 2. Peng Z, Huang W, Luo M, et al. Graph representation learning via graphical mutual information maximization, WWW 2020.

- MI for Information Transmission: local ↔ global
- \triangleright Considering **higher-scale** information transmission (subgraph \leftrightarrow graph), SUGAR¹ provided the answer.
- SUGAR adaptively selects critical subgraphs and encourage subgraph representations to preserve global properties by maximizing MI between subgraphs and the global graph.

- MI for Information Transmission: local ↔ global
- > AdaSNN¹ further extends SUGAR¹ into a Bi-level MI Enhancement mechanism.
- Maximize MI between subgraphs and graph: ensuring subgraph capture comprehensive structural context.
- Maximize MI between subgraphs and labels: injecting discriminative power into subgraph representations.

- MI for Information Transmission: always max MI?
- While maximizing MI maintains consistency across views, doing so alone often leads to homogeneous, collapsed representations.
- ➤ **GraphCL's Idea**¹: Introducing a **minimization MI** step between views helps **preserve diversity** by avoiding overly similar multi-view embeddings.

 $\min I(G_1, G_2) \rightarrow \text{low information}$ overlap between $G_1, G_2 \rightarrow \text{diversity}$

- MI for Information Transmission: always max MI?
- How to trade off between consistency and diversity?
- > AD-GCL's Idea1: adopting an adversarial min-max mutual information scheme.
- It maximizes MI between the original graph and its augmented view (to preserve relevant information), while simultaneously minimizing MI between trivial or redundant augmentations (to discourage collapse and redundancy).

Divergence for Distribution Learning

- Divergence measures the distance between two distributions.
- Divergence is always used to enforce the latent distribution to approximate prior distribution in deep learning.
- GraphVAE¹: Divergence regularization shapes latent space, preserving information while enabling diverse, realistic graph generation.

How to Capture and Utilize Information? Overview

Entropy

Assess the intrinsic uncertainty and complexity of graph.

MI & Divergence

Capture both interdependencies and variations inherent in learning.

Principle

Offer a unified and general objective for representation learning

Principled Graph Learning

- Combining Information-Theoretic principles offers a holistic strategy for developing advanced graph learning models.
- The most popular principle is Information Bottleneck (IB)
- IB explains representation learning as a trade-off: retain task-relevant information while compressing irrelevant information.

IB Objective:

$$\min -I(Z;Y) + \beta I(Z;X)$$

Prediction term

Compression term

- $\triangleright I(Z;Y)$: Efficient task-relevant information
- $\triangleright I(Z;X)$: Minimal irrelevant information

- Graph Information Bottleneck (GIB)¹: the first work to introduce IB into graph learning.
- Addressing Graph-Specific Challenges: GIB assumes local dependency and formulates a tractable search space via a Markov chain to hierarchically extract information from structure and features.
- GIB significantly increase robustness against adversarial attacks on both graph structure and node features.

Y: The target, \mathcal{D} : The input data (= (A, X))

A: The graph structure, X: The node features

Z: The representation

Graph Information Bottleneck:

$$\min_{\mathbb{P}(Z|\mathcal{D})\in\Omega} GIB_{\beta}(\mathcal{D}, Y; Z) \triangleq [-I(Y; Z) + \beta I(\mathcal{D}; Z)]$$

More IB Extension: Data - Space - Method

- Dynamic GIB (DGIB)¹ extends IB to dynamic graphs, directs and refines the information flow passing through graph snapshots.
- DGIB aims to extract Minimum & Sufficient & Consensual representation.

DGIB Objective:

$$\begin{split} \mathbf{Z}^{T+1} &= \arg \min_{\mathbb{P}(\mathbf{Z}^{T+1} \mid \mathcal{D}, \frac{C(\boldsymbol{\theta})) \in \Omega}{\mathbf{D}}} \mathrm{DGIB} \big(\mathcal{D}, \mathbf{Y}^{T+1}; \mathbf{Z}^{T+1} \big) \\ &\triangleq \left[-I \big(\mathbf{Y}^{T+1}; \mathbf{Z}^{T+1} \big) + \beta I \big(\mathcal{D}; \mathbf{Z}^{T+1} \big) \right], \end{split}$$

Consensual: constrains

More IB Extension: Data - Space - Method

- CurvGIB¹: From Information Bottleneck → to Geometry-Aware Bottleneck.
- CurvGIB introducing discrete curvature to guide the information compression along with the optimal transport structure, aiming to extract information from a more suitable embedding space.

More IB Extension: Data - Space - Method

- VIB-GSL¹: Apply Information Bottleneck (IB) to noisy, incomplete, or spurious graph structure.
- VIB-GSL uses variational approximation to provide a tractable bound to optimize adjacency matrix for task-relevant graph.

IB vs. PRI: Two Views of Information

- However, the IB strongly depends on Y. What if we want to extract and compress information solely from G?
- PRI: Does not require labels → takes the representation learning as a trade-off between information redundancy and preservation with respect to intrinsic data structure.
- Viewpoint: PRI = "label-free" extension of IB, focusing on relevance without supervision.

PRI for Graph Data

 PRI-GSL¹: learn task-relevant graphs while preserving intrinsic self-organization patterns (clusters, communities).

PRI-GSL Objective:
$$\mathcal{L}_{\mathrm{PRI}} = H(\tilde{G}) + \beta D(\tilde{G}||G)$$

Redundant Term: measure the disorder of graph

Distortion term: measure the discrepancy between two graphs

PRI for Graph Data

 DG-Mamba¹: Even in more complex scenarios, effective information compression can still be achieved by imposing constraints on the dynamic graph formed from multiple graphs.

DG-Mamba Objective:
$$\mathcal{L}_{PRI}(\hat{\mathcal{G}}^{1:T}) = H(\hat{\mathcal{G}}^{1:T}) + \beta \cdot \mathcal{D}(\hat{\mathcal{G}}^{1:T} || \mathcal{G}^{1:T})$$

Redundant Term: fltering out noise and redundant information

Distortion term: preserve discriminative and invariant temporal-spatial patterns

Outline:

- Why Information Theory for Graph Learning?
- How to Capture and Leverage Information in Graph?
- What's Next? Future Directions of Information-Theoretic GRL

What's Next? Future Directions of Info-GRL

• How to Build a Graph-Specific Information-Theoretic Framework?

Graph Information

Feature Information
+

Structure Information

- Graph-specific information Measures: node/edge/subgraph entropy; context MI...
- Graph Distortion Measures: topology distortion (edges, motifs), feature distortion, spectral/cut distortion.
- Low-Distortion Objectives: minimal bits to encode a graph (or embeddings) under bounded structural + feature loss.
- Evaluation Protocols: predictiveness vs compression trade-offs;
 robustness under perturbations; OOD transfer.

What's Next? Future Directions of Info-GRL

• How to bridge GNNs and alternative architectures from the Information-Theoretic perspective?

Massage passing: most suitable for graph data?

Other architectures: garnered attention due to their ability to model graph data distributions.

What's Next? Future Directions of Info-GRL

- How to Understand the Scaling Law of Graph Foundation Models (GFMs)?
- How to Design Low-Distortion Constraints in the Era of GFM?

Conclusion

- Unifying Principle: Information Theory provides a unified framework for lowdistortion graph representation learning through compression, transmission, and preservation of information.
- Emerging Interface: Information-theoretic tools are already applied in graph learning for data modeling, capturing dependencies, and designing optimization objectives.
- The Road Ahead: Information Theory will inspire new directions in next-generation graph learning, including graph foundational models.

Thank you!

Qingyun Sun

sunqy@buaa.edu.cn

Beihang University, Beijing, China