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Information Theory 

1. Shannon C E. A mathematical theory of communication[J]. The Bell system technical journal, 1948, 27(3): 379-423.

Shannon's Model of a Communication System (1948)

Claude Elwood Shannon

(1916-2001)

A k-symbol sequence X is mapped by anencoder into an n-

symbol input sequence Z

The received channel output sequence H ismapped by a 

decoder into an estimate (reconstruction) sequence ෠𝑋

Information can be efficiently compressed and transmitted using codes, laying the 

foundation of Information Theory
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A Shared Goal: Minimal Distortion 

1. Shannon C E. A mathematical theory of communication[J]. The Bell system technical journal, 1948, 27(3): 379-423.

(Image source: Tishby and Zaslavsky, 2015)

Shannon's Model of a Communication System

Model of Deep Learning

Information Theory seeks to encode 

and decode signals with minimal 

distortion.

Deep Learning similarly aims to 

extract information from data while 

preserving it with minimal distortion.

Shared Goal: 

Compress the input, preserve the core information, and minimize distortion
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Information Theory Meets Graph Learning 

Compressing graph data with rich structure and dependencies into embedding vectors 

inevitably introduces distortion.

Information Theory provides a principled way to measure, compress, and preserve 

information in graph data.

Enc(𝑢)

Enc(𝑣)

𝑢

𝑣

Original Graph Data Embedding Space
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Information Theory Meets Graph Learning 

How can we achieve low-distortion graph learning?

Let’s explore patterns and draw inspiration 

from an Information-Theoretic Perspective!
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How to Capture and Utilize Information?  Overview

Entropy MI & Div PrincipleEntropy

Assess the intrinsic uncertainty and 

complexity of graph.

MI & Divergence

Capture both interdependencies and 

variations inherent in learning.

Principle

Offer a unified and general objective 

for representation learning
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Entropy: Assess intrinsic uncertainty and complexity

Entrop

y

Shannon Entropy 𝐻𝑆 𝑃 = −෍

𝑖

𝑝𝑖 log 𝑝𝑖

Rényi Entropy 𝐻𝑅 𝑃 =
1

1 − 𝑞
෍

𝑖

log ෍

𝑖

𝑝𝑖
𝑞

von Neumann Entropy 𝐻𝑣𝑁 𝜌 = −Tr(𝜌 log 𝜌)

Classical Entropy Graph-Specific Entropy

 Probability-based

 Symmetry (i.i.d.

data)

 Global information 

Structure Entropy (1-D, 2-D, ...)

𝐻1 𝐺

=෍

𝑖

𝑑𝑖
vol 𝐺

log
𝑑𝑖

vol 𝐺

…

…

Root

Node

Community

von Neumann Graph Entropy

𝐻𝑣𝑁 𝐺 = ෍

𝑖

𝜆𝑖
vol 𝐺

log
𝜆𝑖

vol 𝐺

 Structure-oriented

 Dependency (non 

i.i.d)

 Relation 

information 
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Entropy: Assess intrinsic uncertainty and complexity

Entropy Graph Structure Component

Classical 
Entropy

Shannon Entropy ——

Rényi’s 𝑞-order Entropy ——

von Neumann Entropy ——

Graph-Specific 
Entropy

von Neumann Graph Entropy Laplacian matrix eigenvalues

1-D Structure Entropy Node degree

2-D Structure Entropy Graph node partition

Edge Entropy Class of two nodes on the edge

Körner Graph Entropy Independent sets

Residual Entropy Graph node partition

Leveraging graph 

structure is key to 

designing graph-

specific entropy
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Entropy: Assess intrinsic uncertainty and complexity

Undertanding Graph Data: Node Embedding Dimension Selection

1. Yang Z, Zhang G, Wu J, et al. Minimum entropy principle guided graph neural networks, WSDM 2023.

➢ One of the most fundamental setting method design: Embedding Dimension.

➢ Optimal dimension? Minimum Entropy!

➢ MGEDE’s Idea1: min attribute/structure entropy →  min uncertainty → optimal dimension

min
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Entropy: Assess intrinsic uncertainty and complexity

Undertanding Graph Data: Hierarchical Information Extraction

1. Wu J, Chen X, Xu K, et al. Structural entropy guided graph hierarchical pooling, ICML 2022

➢ MGEDE only uses global information, while SEP1 takes hierarchical information into account

➢ 2-D Structure Entropy has an inherent hierarchical structure in the calculation

➢ SEP's Idea: min structure entropy → optimal coding tree → hierarchical relationships → pooling

min
How to optimize structure entropy?

3 steps, greedy algorithm:

1. MERGE: Bottom to top 

construction

2. REMOVE: Compress tree to the 

certain height

3. FILL: Avoid cross-layer links.
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Entropy: Assess intrinsic uncertainty and complexity

Undertanding Graph Data: The entropy is not always minimized

1. Zou D, Peng H, Huang X, et al. Se-gsl: A general and effective graph structure learning framework through structural entropy optimization, WWW 2023

➢ SE-GSL's Idea: max entropy for richer information while min entropy for ordered hierarchy

min

max

min 2-D structure entropy: gain optimal hierarchical

relationships

max 1-D structure entropy: guide the selection of 𝑘 

for larger encoding information

build a graph using KNN

generate coding tree

offer
more

information

extract
meaningful
information
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MI & Divergence

𝐼 𝑆, 𝑇 = න
𝑆

න
𝑇

𝑓 𝑠, 𝑡 log
𝑓 𝑠, 𝑡

𝑓 𝑠 𝑓(𝑡)
𝑑𝑠𝑑𝑡 𝐷𝐾𝐿 𝑓||𝑔 = න

𝑇

𝑓 𝑡 log
𝑓 𝑡

𝑔(𝑡)
𝑑𝑡

𝑇𝑆

𝐼 𝑆, 𝑇 = 𝐷𝐾𝐿 𝑓 𝑠, 𝑡 ||𝑓 𝑠 𝑓 𝑡

𝑓

𝑔

Mutual Information (MI): quantifying the amount of information transmitted

Divergence: measuring distribution differences

Mutual Information Divergence
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MI for Information Transmission

Message passing is a fundamental paradigm in graph learning, where controlling 

information flow is the key.

Information can be filtered and compressed by capturing the information flow among 

different views (local global)

Local

Global

Graph

Sub-graph

Node

Graph

Edge

Information

Transmission

Across

Different Scales
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➢ DGI1: Maximize MI between local node representations and the 

global graph representation

➢ By aligning local and global views, DGI learns embeddings that 

preserve rich structural and feature information without 

supervision.

➢ DMI2: introducing Feature Mutual Information and Topology-

Aware Mutual Information → comprehensively capture the 

information in graph

1. Veličković P, Fedus W, Hamilton W L, et al. Deep Graph Infomax, ICLR 2018.

2. Peng Z, Huang W, Luo M, et al. Graph representation learning via graphical mutual information maximization, WWW 2020.

MI for Information Transmission

MI for Information Transmission: local global
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1. Sun Q, Li J, Peng H, et al. Sugar: Subgraph neural network with reinforcement pooling and self-supervised mutual information mechanism, WWW 2021.

MI for Information Transmission

➢ Considering higher-scale information transmission (subgraph graph), SUGAR1 provided the answer.

➢ SUGAR adaptively selects critical subgraphs and encourage subgraph representations to preserve global 

properties by maximizing MI between subgraphs and the global graph.

sketching

subgraph

graph

MI for Information Transmission: local global
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1. Li J, Sun Q, Peng H, et al. Adaptive subgraph neural network with reinforced critical structure mining, TPAMI 2023

MI for Information Transmission

➢ AdaSNN1 further extends SUGAR1 into a Bi-level MI Enhancement mechanism.

➢ Maximize MI between subgraphs and graph: ensuring subgraph capture comprehensive structural context.

➢ Maximize MI between subgraphs and labels: injecting discriminative power into subgraph representations.

MI for Information Transmission: local global



21
1. You Y, Chen T, Wang Z, et al. Bringing your own view: Graph contrastive learning without prefabricated data augmentations, WSDM 2022

MI for Information Transmission

➢ While maximizing MI maintains consistency across views, doing so alone often leads to homogeneous, 

collapsed representations.

➢ GraphCL’s Idea1: Introducing a minimization MI step between views helps preserve diversity by avoiding 

overly similar multi-view embeddings.

MI for Information Transmission: always max MI?

min 𝐼(𝐺1, 𝐺2) → low information 

overlap between 𝐺1, 𝐺2 → diversity

𝐺2𝐺1
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1. Suresh S, Li P, Hao C, et al. Adversarial graph augmentation to improve graph contrastive learning, NeurIPS 2021

MI for Information Transmission

➢ How to trade off between consistency and diversity?

➢ AD-GCL’s Idea1: adopting an adversarial min–max mutual information scheme. 

➢ It maximizes MI between the original graph and its augmented view (to preserve relevant information), 

while simultaneously minimizing MI between trivial or redundant augmentations (to discourage collapse 

and redundancy).

MI for Information Transmission: always max MI?
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GraphVAE1:

1. Simonovsky M, Komodakis N. Graphvae: Towards generation of small graphs using variational autoencoders, ICANN, 2018.

Divergence for Distribution Learning

Divergence measures the distance between two distributions.

Divergence is always used to enforce the latent distribution to approximate prior 

distribution in deep learning.

GraphVAE1: Divergence regularization shapes latent space, preserving information 

while enabling diverse, realistic graph generation.

obtained through 
the model

unknown, 
usually is N(0,I)
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Principled Graph Learning

Combining Information-Theoretic principles offers a holistic strategy for developing 

advanced graph learning models.

The most popular principle is  Information Bottleneck (IB)

IB explains representation learning as a trade-off: retain task-relevant information while 

compressing irrelevant information.

min−𝐼 𝑍; 𝑌 + 𝛽𝐼(𝑍; 𝑋)

Compression termPrediction term

IB Objective: 

➢ 𝐼(𝑍; 𝑌): Efficient task-relevant information 

➢ 𝐼(𝑍; 𝑋): Minimal irrelevant information
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IB Extentions to Graph Data

Graph Information Bottleneck (GIB)1：the first work to introduce IB into graph learning.

Addressing Graph-Specific Challenges: GIB assumes local dependency and formulates a 

tractable search space via a Markov chain to hierarchically extract information from 

structure and features.

GIB significantly increase robustness against adversarial attacks on both graph structure 

and node features.

1. Wu T, Ren H, Li P, et al. Graph information bottleneck, NeurIPS 2020
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IB Extentions to Graph Data

More IB Extension: Data - Space - Method

Dynamic GIB (DGIB)1 extends IB to dynamic graphs,  directs and refines the information 

flow passing through graph snapshots.

DGIB aims to extract Minimum & Sufficient & Consensual representation.

1. Yuan H, Sun Q, Fu X, et al. Dynamic graph information bottleneck, WWW 2024. 

DGIB Objective: 

Consensual: constrains 
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IB Extentions to Graph Data

More IB Extension: Data - Space - Method

CurvGIB1: From Information Bottleneck → to Geometry-Aware Bottleneck.

CurvGIB introducing discrete curvature to guide the information compression along with 

the optimal transport structure, aiming to extract information from a more suitable 

embedding space.

1. Fu X, Wang J, Gao Y, et al. Discrete curvature graph information bottleneck, AAAI 2025

CurvIB Objective: 
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IB Extentions to Graph Data

More IB Extension: Data - Space - Method

VIB-GSL1: Apply Information Bottleneck (IB) to noisy, incomplete, or spurious graph 

structure.

VIB-GSL uses variational approximation to provide a tractable bound to optimize adjacency 

matrix for task-relevant graph.

1. Sun Q, Li J, Peng H, et al. Graph structure learning with variational information bottleneck, AAAI 2022

VIB-GSL Objective: 

Remove
irrelevant
structure

Preserve 
task-relevant 

structure
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IB vs. PRI: Two Views of Information

However, the IB strongly depends on Y. What if we want to extract and compress 

information solely from G?

PRI: Does not require labels → takes the representation learning as a trade-off between 

information redundancy and preservation with respect to intrinsic data structure.

Viewpoint: PRI = “label-free” extension of IB, focusing on relevance without supervision.

min−𝐼 𝑍; 𝑌 + 𝛽𝐼(𝑍; 𝑋) min𝐻(𝑍) + 𝛽𝐷(𝑍||𝑋)

Information Bottleneck (IB): Principle of Relevant Information (PRI):

MinimumSufficient Redundancy Discrepancy



Redundant Term: measure the 
disorder of graph

Distortion term: measure the 
discrepancy between two graphs
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PRI for Graph Data

PRI-GSL1: learn task-relevant graphs while preserving intrinsic self-organization patterns 

(clusters, communities).

1. Sun Q, Li J, Yang B, et al. Self-organization preserved graph structure learning with principle of relevant information, AAAI 2023

PRI-GSL Objective: 



Redundant Term: fltering out 
noise and redundant information

Distortion term: preserve discriminative and 
invariant temporal-spatial patterns
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PRI for Graph Data

DG-Mamba1: Even in more complex scenarios, effective information compression can still 

be achieved by imposing constraints on the dynamic graph formed from multiple graphs.

1. Yuan H, Sun Q, Wang Z, et al. Dg-mamba: Robust and efficient dynamic graph structure learning with selective state space models, AAAI 2025

DG-Mamba Objective: 
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What’s Next? Future Directions of Info-GRL

Graph Information 

≠ 
Feature Information

+ 
Structure Information

Graph-specific information Measures: node/edge/subgraph 

entropy; context MI...

Graph Distortion Measures: topology distortion (edges, 

motifs), feature distortion, spectral/cut distortion.

Low–Distortion Objectives: minimal bits to encode a graph (or 

embeddings) under bounded structural + feature loss.

Evaluation Protocols: predictiveness vs compression trade-offs; 

robustness under perturbations; OOD transfer.

How to Build a Graph-Specific Information-Theoretic Framework?
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What’s Next? Future Directions of Info-GRL

How to bridge GNNs and alternative architectures from the Information-

Theoretic perspective?

GNN Transformer

Encoder

DecoderDiscriminator

Generator

GAN VAE

…

Massage passing: most 
suitable for graph data?

Other architectures: garnered attention due to 
their ability to model graph data distributions.

Information

Encoding
Transmission

Decoding
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What’s Next? Future Directions of Info-GRL

How to Understand the Scaling Law of Graph Foundation Models (GFMs)?

How to Design Low-Distortion Constraints in the Era of GFM?

?

Entropy convergence?

Information saturation?

Information capacity?

Expressive power?
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Conclusion

Unifying Principle: Information Theory provides a unified framework for low-

distortion graph representation learning through compression, transmission, and 

preservation of information.

Emerging Interface: Information-theoretic tools are already applied in graph 

learning for data modeling, capturing dependencies, and designing optimization 

objectives.

The Road Ahead: Information Theory will inspire new directions in next-generation 

graph learning, including graph foundational models.
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