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Graph: everything is connected!

Graphs can model complex environments, and it can help people deeply 

understand the patterns and mechanisms in the interconnections of all things.

Topological Properties

Small Word Scale-free Self-similarity Hierarchy

Social Network Biological Network Chemical Molecules Knowledge Graph



Perspectives of graph learning 

Different theoretical perspectives can provide various inspirations to 

graph learning.

Statistical Characteristics Signal/Information Topological Properties

Graph Theory Information Theory Graph Geometry

Acknowledgement from https://medium.com/@jlcastrog99/spectral-graph-convolutions-c7241af4d8e2



What is graph geometry?

Graph geometry is a mathematical tool that uses geometry to measure 

various features of graphs.

Euclid (fl. 300 BC)Length Angle Shape

Path Similarity/Clustering Topologies

Classical Geometric Tools

Clique Grid Tree



Why do we need graph geometry?

Graph geometry provides geometrically intuitive mathematical tools for 

measuring topological properties.

Geometric priors of space

Curved space can be understood as a continuous 

approximation of the underlying structure.

Spherical

（Cycle/Clique）
Euclidean

（Grid）
Hyperbolic

（Tree-like）

Geometric features carry significant 

information and semantics

Radius

（Centrality）
Geodesic

（Distance）
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Geometric 
Intuition

Topologies

Small-world HierarchySelf-similarityFractal network

Geometric properties of data



Geometric perspective of GRL

Enc(𝑢)

Enc(𝑣)

Graph data Representation space

𝑢

𝑣

Embedding Distortion

Non-Euclidean Structure Euclidean Space

Geometric Properties Missing
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Distortion in Geometric Perspective

Definition (Embedding Distortion)[1][2]. Given a graph 𝐺 with node set 𝑉, for 

each node-pair (𝑖，𝑗) ∈ 𝑉the embedding distortion 𝒟 in the hyperbolic 

embedding space ℍ is defined as: 

Topological distance

(the shortest path)

Representation space

Embedding distance(hyperbolic)

Normalization

[1] Christopher S, Albert Gu, et al. Representation Tradeoffs for Hyperbolic Embeddings[C]. ICML 2018. 

[2] Xingcheng Fu, et al. ACE-HGNN: Adaptive curvature exploration hyperbolic graph neural network[C], ICDM 2021, Best Paper Candidate.



Riemannian geometry & graphs

Riemannian geometry provide a powerful and elegant mathematical 

framework for studying graph deep learning. 

Gosztolai A, Arnaudon A. Unfolding the multiscale structure of networks with dynamical Ollivier-Ricci curvature[J]. Nature Communications, 2021, 12(1): 4561.

Discrete topologies and their continuous analogue manifolds[1]

Exponential & logistical mapping

Differential geometry computation



Graph curvature

There are two main types of graph curvature: the global Gaussian Curvature is used 

to control the curvature of the space; The local discrete (Ricci) curvature is used to 

reflect the topological properties of the edges.

Ni C C, Lin Y Y, Luo F, et al. Community detection on networks with Ricci flow[J]. Scientific reports, 2019, 9(1): 9984.

Gaussian curvature:



Hyperbolic / Riemannian GNNs

The common non-Euclidean geometric graph neural networks mainly project the non-Euclidean space 
representation onto the tangent space for GNN aggregation, and then project it back to the non-
Euclidean space. 

There are mainly two options for space selection: (1) Heuristically estimating the curvature of the 
space; (2) Using the product space of mixed positive, zero and negative.

𝜅

𝜅-Stereographic model 𝔰𝔱𝜅
𝑛

HGNN[1] 𝜿-GNN [2] Mixed-Curvature [3]

[1] Chami I, Ying Z, RéC, et al. Hyperbolic graph convolutional neural networks[C]. NeurIPS 2019. 

[2] Bachmann G, Bécigneul G, Ganea O. Constant curvature graph convolutional networks[C]. ICML 2020. 

[3] Gu A, Sala F, Gunel B, et al. Learning mixed-curvature representations in product spaces[C]. ICLR 2018.

Product space 𝕊𝑛 ×ℍ𝑛

Graph

Estimate

Tangent space ℍ𝑛 → ℝ𝑛 →ℍ𝑛



Topologies

Space

Simplex structure Complex structure 

?

?Euclidean distance

Spherical distance
Euclidean distance

Hyperbolic distance

Cycle/Clique Tree Heterogeneous topological structure

Riemannian geometric space

Challenges of embedded space

The graph structure in the real world is extremely complex and diverse. 

Heuristically selecting the representation space will lead to distortion.



Optimal space exploration

Adaptive Curvature Exploration for any downstream task  

ACE-HGNN(hyperbolic) and ACE-GEO(Riemannian) adaptively preserves hierarchical and clique structure 

for given any graph without any priori knowledge, which allows it to perform supremely across various 

topology of graphs. 

Xingcheng Fu, et al. ACE-HGNN: Adaptive curvature exploration hyperbolic graph neural network[C], ICDM 2021, Best Paper Candidate.

Xingcheng Fu, et al. Adaptive Curvature Exploration Geometric Graph Neural Network[J], KAIS 2022, Best Paper Candidate Invitation Track

Paper: https://arxiv.org/pdf/2110.07888.pdf

Code: https://github.com/RingBDStack/ACE-HGNN



Global-local curvature collaboration

Sampling robust representations by using Gaussian and Ricci curvatures.

CurvGAN can capture the underlying topology by estimate optimal curvature. It can directly generate fake 

samples in Riemannian geometric space and refine by Ricci curvature, to obtain more robust representations.

Jianxin Li, Xingcheng Fu, et al. Curvature Graph Generative Adversarial Networks[C], WWW 2022.

Paper: https://arxiv.org/abs/2203.01604 

Code: https://github.com/RingBDStack/CurvGAN

https://github.com/RingBDStack/HyperDiff


Graph mixture of Riemannian experts

Utilizing Riemannian experts to capture heterogeneous topologies

GraphMoRE construct personalized embedding spaces for nodes, and provide an alignment strategy to 

calculate pairwise distances, to minimize the distortion of heterogeneous topologies.

Guo Z, Sun Q, Yuan H, X Fu, et al. GraphMoRE: Mitigating Topological Heterogeneity via Mixture of Riemannian Experts[C], AAAI 2025.

Paper: https://arxiv.org/abs/2412.11085 Code: https://github.com/RingBDStack/GraphMoRE



Riemannian graph foundation model

Modeling the structural vocabulary in the Riemannian spaces

Universal pre-trained model (RiemannGFM) on a novel product bundle where the structural vocabulary is 

learned in Riemannian manifold, offering the shared structural knowledge for cross-domain transferability.

Li Sun, Z Huang, et al. RiemannGFM: Learning a graph foundation model from Riemannian geometry[C]. WWW 2025.



Universe shape understanding

We proposed the geometry prompt that generates geometry tokens by random walks across diverse spaces 

on a multi-scale physical graph for galaxy discovery!

How to understanding the universe shape at galaxy-scale?

Paper: https://arxiv.org/pdf/2503.18578v1

Tianyu Chen, Xingcheng Fu, et al. Galaxy Walker: Geometry-aware VLMs For Galaxy-scale Understanding[C], CVPR. 2025, Highlight Paper.

https://arxiv.org/pdf/2503.18578v1
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Radius and topological roles

Radius of a node—its distance from the center—can powerfully reflect 

its topological role in the graph. This provides a geometric lens for 

understanding hierarchy and influence in complex networks.

[1] Börner K, et al. Skill discrepancies between research, education, and jobs reveal the critical need to supply soft skills for the data economy[J]. PNAS 2018.

Root / Core

Edge node

Critical need skills mining[1]

Radius and role of node 

in hyperbolic space



Hierarchy-imbalance learning

Xingcheng Fu, et al. Hyperbolic Geometric Graph Representation Learning for Hierarchy-imbalance Node Classification. WWW 2023 Spotlight.

Paper: https://arxiv.org/abs/2304.05059 Code: https://github.com/RingBDStack/HyperIMBA

New imbalance issue concept of graph with geometric perspective

This work explore the hierarchy-imbalance as a new topic for semi-supervised node classification,

and propose a novel hyperbolic geometric training framework to deal with the imbalance issue.

https://arxiv.org/abs/2304.05059
https://github.com/RingBDStack/HyperIMBA


Hierarchy-aware privacy protection

Yuecen Wei, Haonan Yuan, Xingcheng Fu, et al. Poincaré Differentially Private for Hierarchy-aware Graph Embedding. AAAI 2024.

Paper: https://arxiv.org/abs/2312.12183 Code: https://github.com/RingBDStack/PoinDP

Different topological roles result in more personalized privacy requirements.

We proposed a Hyperbolic Differential Privacy method, it provides much more fine-grained and personalized 

privacy protection for users.



Geometry of causality in physics

“Fate lies within the light cone.”

― Liu Cixin, The Dark Forest

causality

Minkowski spacetime: taking time to be an 

imaginary fourth spacetime coordinate 𝑖𝑐𝑡, where 

𝑐 is the speed of light and 𝑖 is the imaginary unit.

Light cone and causal structure: Vector fields 

are called timelike, spacelike or null if the 

associated vectors are timelike, spacelike or null 

at each point where the field is defined.

(𝑥0, 𝐱) ≡ (𝑥0, 𝑥1, … , 𝑥𝑛)
featurestime space

Special relativity (Albert Einstein in 1905)

“光锥之内皆是命运。”

― 刘慈欣,《三体-黑暗森林》

[1] Sim A, Wiatrak M L, Brayne A, et al. Directed graph embeddings in pseudo-riemannian manifolds[C]. ICML 2021.

Directed graph in Euclidean space and Minkowski spacetime[1]



Angle and cone of DAG modeling

In the geometric perspective, transitive relation of directed acyclic 

graph (DAG) induces special  “light cones” in the embedding space.

Hyperbolic entailment cones[2]Flat cones[1]

[1] Suzuki R, Takahama R, Onoda S. Hyperbolic disk embeddings for directed acyclic graphs[C]. ICML 2019.

[2] Ganea, O.E., Becigneul, G., and Hofmann, T. Hyperbolic Entailment Cones for Learning Hierarchical Embeddings. ICML 2018. 



Modeling knowledge hierarchies

Using restricted rotation transformation to model hierarchical relations

ConE (Cone Embedding for knowledge graphs), the first knowledge graph (KG) embedding method that 

can capture the transitive closure properties of heterogeneous hierarchical relations as well as other non-

hierarchical properties.

Bai Y, Ying Z, Ren H, et al. Modeling heterogeneous hierarchies with relation-specific hyperbolic cones[C]. NeurIPS, 2021.



Hyperbolic cone for reasoning

Hyperbolic geometric-based query embedding to handle hierarchies

POINE2 maps entities and queries as geometric shapes on a Cartesian product space of Poincaré ball spaces, 

it leaverage the Poincaré radius to represent the different levels of the hierarchy, and the aperture of the angle 

to indicate semantic differences at the same level of the hierarchy.

J Liu, Q Mao, J Li, X Fu, et al. POINE2 : Improving Poincaré Embeddings for Hierarchy-Aware Complex Query Reasoning over Knowledge Graphs[C], ECAI 2023.

Paper: https://core.ac.uk/download/pdf/591452439.pdf

https://core.ac.uk/download/pdf/591452439.pdf


Orientation and anisotropic of graph

Graph structure is non-Euclidean (irregular), it exhibits significant 

directional bias and anisotropy both in the discrete topology and the 

embedding space. Therefore, the geometric property of the graph 

orientation is important to capture the ground-truth structure.

[1] Elhag A A A, Corso G, Stärk H, et al. Graph anisotropic diffusion for molecules[C]. ICLR 2022.

[2] Yang R, Yang Y, Zhou F, et al. Directional diffusion models for graph representation learning[C]. NeurIPS 2023.

Anisotorpic message propagation on graph topology[1] Anisotorpic distribution of graphs on latent space[2]



Hyperbolic graph diffusion

Lower-distortion and High-Efficiency Topology Generation

Hyperbolic geometry provides better priors for topological properties of graphs with non-Euclidean 

structure. Anisotropic diffusion provides better and more fine-grained structure details for graph structure 

generation. Our model has low computational complexity and GPU occupancy.

Paper: https://arxiv.org/pdf/2405.03188

Code: https://github.com/RingBDStack/HyperDiff

Xingcheng Fu, Yisen Gao, et al. Hyperbolic Geometric Latent Diffusion Model for Graph Generation [C], ICML 2024.

https://arxiv.org/pdf/2405.03188
https://github.com/RingBDStack/HyperDiff


Geometric intuition of GNNs

Graph geometry can provide a powerful geometrically intuitive 

mathematical tools for underlying mechanism understanding of GNNs.

[1] Topping J, Di Giovanni F, Chamberlain B P, et al. Understanding over-squashing and bottlenecks on graphs via curvature[C].  ICLR 2022.

[2] Nguyen K, Hieu N M, Nguyen V D, et al. Revisiting over-smoothing and over-squashing using ollivier-ricci curvature[C]. ICML, 2023.

Over-squashing problem of MPNNs[1] Understanding of Over-smoothing and Over-squashing[2]



Curvature information bottleneck

Definition  (Curvature Graph Information Bottleneck)

Paper: https://arxiv.org/pdf/2412.19993

Code: https://github.com/RingBDStack/CurvGIB

Comparison between Information Theory and Graph Geometry

IB-based methods only focuses on finding task-relevant information, and lacks a unified perspective to 

comprehensively understand the underlying task-relevant optimal transport structures in GNNs. 

Xingcheng Fu, Jian Wang, et al. Discrete Curvature Graph Information Bottleneck[C], AAAI 2025.

https://arxiv.org/pdf/2405.03188
https://arxiv.org/pdf/2405.03188
https://github.com/RingBDStack/CurvGIB


Continuous structural entropy

Generalizing the classic theory to the continuous realm

It present the Differentiable Structural Information (DSI), generalizing the classic theory to the continuous 

realm. DSI emerges as a new graph clustering objective, not requiring the cluster number. 

Li Sun, Z Huang, H Peng, et al. LSEnet: Lorentz structural entropy neural network for deep graph clustering[C]. ICML, 2024, Oral Paper.
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