

Towards Low-Distortion Graph Representation Learning: Advanced Directions

Yuan Haonan @ MAGIC Group

yuanhn@buaa.edu.cn

August 29th, 2025

Outlines

- I. Recap of Tutorial
 - □ Low-Distortion GRL Motivation and Key Concept
 - Key Approaches to Reduce Distortion
- □ II. Future Directions
 - Benchmarks for Low-Distortion GRL
 - ☐ Graph Foundation Model (GFM)
 - □ Graph Retrieval-Augmented Generation (GraphRAG)
 - ☐ Graph World Model (GWM)
- □ III. Open Challenges and Outlook
- **□ IV. Discussion**

■Low-Distortion GRL – Motivation and Key Concept

- ☐ Graph distortion: loss of intrinsic structure info in embeddings (noisy edges, missing links, altered topology)
- □ Goal: preserve essential graph properties in low-dim representations
- □ Complex topologies make embeddings sensitive to small perturbations, risking major information loss

Key Approaches to Reduce Distortion

Invariance-guided (causality-based) methods: enforce stable representations under graph perturbations or interventions, isolating causal structure from noise

Key Approaches to Reduce Distortion

Information-theoretic methods: maximize mutual information and minimize info loss between graphs and embeddings (retain as much original signal as possible)

Key Approaches to Reduce Distortion

□ Geometry-guided methods: embed graphs in non-Euclidean spaces (e.g. hyperbolic) better suited to graph structure, reducing embedding distortion for hierarchical or complex topologies

Outlines

- □ I. Recap of Tutorial
 - Low-Distortion GRL Motivation and Key Concept
 - Key Approaches to Reduce Distortion
- II. Future Directions
 - Benchmarks for Low-Distortion GRL
 - ☐ Graph Foundation Model (GFM)
 - Graph Retrieval-Augmented Generation (GraphRAG)
 - ☐ Graph World Model (GWM)
- □ III. Open Challenges and Outlook
- **□ IV.** Discussion

■ Need for structural fidelity benchmarks: Current evaluations often don't reveal the advantages of low-distortion methods

□ Develop new metrics (e.g. curvature, hyperbolicity) and tasks to test how well embeddings preserve topology and features

Community benchmarks & leaderboards: Build shared datasets and standardized protocols to fairly compare methods and drive progress

- Imbalanced Machine Learning
 - □ Data imbalance leads to decision boundary shift
 - □ decision boundary shift → high-distortion GRL

□ Imbalanced Graph Learning (IGL)

■ There lacks a comprehensive benchmark for Imbalanced Graph Learning (IGL), which significantly impedes the understanding and progress of IGL

■Why Benchmark for IGL?

- Node-level imbalanced graph learning
 - Class-imbalance: the disproportionate distribution of labeled nodes across classes
 - Topology-imbalance: the positional distribution of labeled nodes on the graph
- ☐ Graph-level imbalanced graph learning
 - Class-imbalance: the disproportionate distribution of labeled graphs across classes
 - ☐ Size-imbalance: the great disparity in graph sizes between multiple graphs

Algorithms (Node-level)				
Resampling	LTE4G, ALLIE			
Reweighting	TAM, HyperIMBA, Renode, TOPOAUC			
Reconstruction	GraphENS, PASTEL, GraphSANN, GraphSHA			

Datasets (Node-level)				
Manual imbalanced datasets	Cora, Citeseer, Pubmed, Chameleon, Squirrel, Actor			
Natural imbalanced datasets	Amazon-Photo, Amazon- Computers, ogbn-arXiv			

Datacate (Nada Javal)

Comparison

Backbones

Homophily

- □ IGL-Bench: Establishing the comprehensive benchmark for IGL
- □ 17 diverse graph datasets and 24 distinct IGL algorithms

- □ Foundation Models: A foundation model is a model that is trained on broad data and be adapted to a wide range of downstream tasks.
 - □ Pretrain-then-finetune
 - Revolutionize many research domains

- Foundation Models
- Two Characteristics of Foundation Models:
 - □ Emergence: As scales up, it spontaneously manifests novel capabilities.
 - □ Homogenization: Enables its deployment across diverse applications.

□ Graph Foundation Models: A graph foundation model (GFM) is a model pre-trained on extensive graph data, adapted for diverse downstream graph tasks.

□ Graph Foundation Models: A graph foundation model (GFM) is a model pre-trained on extensive graph data, adapted for diverse downstream graph tasks.

■ Two Characteristics of GFMs:

- Emergence: Scaling up GNNs, redesign graph neural network architectures (e.g. deeper, Transformer-based) with far more parameters to unlock emergent capabilities.
- Homogenization: Leverage large unlabeled graph datasets for selfsupervised learning, then adapt one model to diverse downstream graph tasks

□ Key Techniques of GFMs:

■ Pre-training: neural networks are trained on a large graph dataset in a self-supervised manner (contrastive / generative)

- Key Techniques of GFMs:
 - □ Pre-training: neural networks are trained on a large graph dataset in a self-supervised manner (contrastive / generative)
 - Adaptation: adapt pre-trained models to specific downstream tasks or domains to enhance their performance

☐ GFMs V.S. LLMs

	Language Foundation Model	Graph Foundation Model
Goal	Enhancing the model's expressive power and its generalization across various tasks	
Paradigm	Pre-training and Adaptation	
Data	Euclidean data (text)	Non-Euclidean data (graphs) or a mixture of Euclidean (e.g., graph attributes) and non-Euclidean data
Task	Many tasks, similar formats	Limited number of tasks, diverse formats
Backbone Architectures	Mostly based on Transformer	No unified architecture
Homogenization	Easy to homogenize	Difficult to homogenize
Domain Generalization	Strong generalization capability	Weak generalization across datasets
Emergence	Has demonstrated emergent abilities	No/unclear emergent abilities as of the time of writing
	Paradigm Data Task Backbone Architectures Homogenization Domain Generalization	Goal Enhancing the model's expressive per Paradigm Pre-tropy Data Euclidean data (text) Task Many tasks, similar formats Backbone Architectures Mostly based on Transformer Homogenization Easy to homogenize Domain Generalization Strong generalization capability

☐ Text-free GFMs

- □ single-domain pre-training, cross-task adaptation
- multi-domain pre-training, cross-domain / task adaptation
- homogeneous and heterogeneous GFMs
- robust GFMs (noise, adversarial attacks)
- stable GFMs (few-shot, fine-tuning)
- □ scalable GFMs
- GFMs with theoretical guarantees in knowledge transfer
- □ ...

- □ Text-free GFMs
 - □ Challenge: Multi-domain conflicts & dimension inconsistency

(a) Various transfer scenarios

(b) Observation of domain conflicts

- ☐ Text-free GFMs
 - □ Challenge: Multi-domain conflicts & dimension inconsistency

(a) Cross domain pre-training

(b) Downstream node classification / graph classification

- ☐ Text-free GFMs
 - □ Challenge: Lack of theoretical guarantees in knowledge transfer

☐ Text-free GFMs

□ Challenge: Lack of theoretical guarantees in knowledge transfer

- ☐ Text-free GFMs
 - □ Challenge: Graph topology differences across domains

■ Text-attributed GFMs

- Text-attributed GFMs
 - LLM-as-enhancer / encoder

Enhancement: $e_i = f_{LLM}(t_i, p), \mathbf{x}_i = f_{LM}(e_i, t_i),$

Graph Learning: $\mathbf{H} = f_{GNN}(\mathbf{X}, \mathbf{A}),$

Enhancement: $\mathbf{x}_i = f_{\text{LLM}}(t_i)$,

Graph Learning: $\mathbf{H} = f_{GNN}(\mathbf{X}, \mathbf{A})$.

- Text-attributed GFMs
 - □ LLM-as-enhancer / encoder

- Text-attributed GFMs
 - LLM-as-predictor

Graph Flattening: $G_{seq} = \text{Flat}(\mathcal{V}, \mathcal{E}, \mathcal{T}, \mathcal{J}),$

Prediction: $\tilde{Y} = \text{Parse}(f_{\text{LLM}}(G_{seq}, p)),$

Graph Learning: $\mathbf{H} = f_{GNN}(\mathbf{X}, \mathbf{A}),$

Prediction: $\tilde{Y} = \text{Parse}(f_{\text{LLM}}(\mathbf{H}, p)),$

- Text-attributed GFMs
 - LLM-as-predictor

- Text-attributed GFMs
 - LLM-as-predictor

Workflow of text-structure alignment

- Text-attributed GFMs
 - LLM-as-predictor

```
Graph Information: <graph>: Central Node: 68442, Edge index: [[...src node...], [...dst node...]], Node list: [...]
                                                                                                                                         Graph Matching
Human Question: Given a sequence of graph tokens <graph> that constitute a subgraph of a citation graph, .... Here is a list of paper titles: 1. ...
2. ..., please reorder the list of papers according to the order of graph tokens.
GraphGPT Response: Based on the given graph tokens and the list of paper titles, we obtain the matching of graph tokens and papers: Graph token 1
corresponds to smt based induction methods for timed systems. Graph token 2 corresponds to ...
Graph Information: <graph>: Central Node: 2, Edge index: [[...src node...], [...dst node...]], Node list: [...]
                                                                                                                                    Node Classification
Human Question: Given a citation graph: <graph> where the 0th node is the target paper, with the following information: Abstract: ... Title: ...
Question: Which arXiv CS sub-category does this paper belong to? ...
GraphGPT Response: cs.IT, cs.LG, cs.SP, cs.CV, cs.NA. The paper discusses the Restricted Isometry .... So, it is likely to belong to cs.IT...
Graph Information: <graph>: Central Node 1: 8471, Edge index 1: [[...src node...], [...dst node...]], Node list 1: [...]
                                                                                                                                        Link Prediction
                    <graph>: Central Node 2: 19368, Edge index 2: [[...src node...], [...dst node...]], Node list 2: [...]
Human Question: Given a sequence of graph tokens: <graph> that constitute a subgraph of a citation graph, .... Abstract: ... Titile: ... and the other
sequence of graph tokens: <graph>, ... Abstract: ... Title: ..., are these two central nodes connected? Give me an answer of "yes" or "no".
GraphGPT Response: Yes, they are connected. Based on the first paper, .... And the second paper proposes ....
```

■ Text-attributed GFMs

- Text-attributed GFMs
 - ☐ GNN-LLM-Alignment

Graph Retrieval-Augmented Generation (GraphRAG)

□ Retrieval in the age of LLMs

"Chat with an LLM"

■A deeper look at traditional RAG

☐ GraphRAG pipeline

☐ GraphRAG pipeline

Example of summarization and triple extraction

Chunk 1

Larry Fink is the CEO and co-founder of BlackRock, the world's largest asset management firm, established in 1988 ...

Processed chunk 1

Larry Fink is the CEO and co-founder of BlackRock.

BlackRock was established in 1988.

<Larry Fink, is_ceo_of, BlackRock > <Larry Fink, founded, BlackRock > <BlackRock, founded in, 1988 >

Chunk 2

Born in Los Angeles, California, in 1952, Fink grew up in Van Nuys and later earned his MBA from UCLA's Anderson School of Management ...

Step 1: Text processing

Processed chunk 2

Larry Fink was born in Los Angeles, California. Larry Fink earned his MBA from UCLA

Step 2: Triple extraction

<Larry Fink, born in, Los Angeles > <Los Angeles, is city in, California > <Larry Fink, graduated from, UCLA >

Chunk n

10.0 trillions of dollars in asset management

Processed chunk n

BlackRock manages 10.5 trillion dollars in assets.

<BlackRock, asset value, 10.5 trillion >

☐ GraphRAG pipeline

Recall: Graphs can model simple sentences

Chunk 1

<Larry Fink, is_ceo_of, BlackRock >
<Larry Fink, founded, BlackRock >

Chunk 2

<Larry Fink, born_in, Los Angeles >
<Los Angeles, is_city_in, California >
<Larry Fink, graduated_from, UCLA >

- Benefit 1: Information in disparate chunks are now directly connected
- Benefit 2: Triples are a form of capturing the **essence** of text chunks in very simple sentences
- Benefit 3: Can now put the triples into a graph DB where you can query it using a query language

☐ GraphRAG pipeline

□ Why Dynamic GraphRAG?

- ☐ The intrinsic structure of a graph (with nodes and edges) can model the temporal dynamics and evolution of events.
- □ Traversing that sub-graph lets the system return both semantic related and time closely event chains rather than scattered snippets.
- □ Presents retrieved events as a chronologically sorted timeline + a Time-CoT template that teaches the model inclusion, overlap & persistence rules

Dynamic GraphRAGs

semantic score + temporal score

$$TempRet_t(q, d, qt, dt) = \begin{cases} s(q, d) + \tau(qt, dt) & \text{if } qt \ge dt \\ -\infty, & \text{otherwise} \end{cases}$$

Dynamic GraphRAGs

□ Dynamic GraphRAGs

Dynamic GraphRAGs

Dynamic GraphRAGs

(a) Comparison of RAG pipeline

(b) Comparison of multi-dimensions

Dynamic GraphRAGs

Method	Graph Unit	Edge Type	Retrieval Strategy	Reasoning Mechanism	Dynamic
GraphRAG	Entity + Community	KG Relations + Community Links	Local + Global	Community summary	X
LightRAG	Chunk Entities	Intra-chunk KG Relations	Dual-level keywords	Shallow path merge	X
E ² GraphRAG	Summary Tree + Entity	Semantic + Hierarchical Links	Adaptive Local/Global	Chunk ranking	X
HippoRAG	Concept Nodes	Concept Associations	PPR-guided multi-hop	PPR subgraph rank	X
HybridRAG	KG + Chunks	KG relations	Hybrid merge	Evidence voting	X
DyG-RAG	Dynamic Event Units	Temporal-Semantic Links	Time-aware graph walk	Time-CoT	/

Dynamic GraphRAGs

□ Dynamic GraphRAGs

■Graph World Model (GWM) → Model the World as Graph

- unifies world-modeling with graph structure: represents the world state as a graph with multi-modal data and action nodes
- □ handle diverse tasks (generation, recommendation, multi-agent simulation, planning) by reasoning over a structured graph

Graph World Model (GWM)

Graph World Model (GWM)

☐ Possible frameworks

Outlines

- □ I. Recap of Tutorial
 - Low-Distortion GRL Motivation and Key Concept
 - Key Approaches to Reduce Distortion
- □ II. Future Directions
 - Benchmarks for Low-Distortion GRL
 - ☐ Graph Foundation Model (GFM)
 - ☐ Graph Retrieval-Augmented Generation (GraphRAG)
 - ☐ Graph World Model (GWM)
- □ III. Open Challenges and Outlook
- **□ IV.** Discussion

Data and Evaluation Challenges

- □ Limited graph data scale: Few large, high-quality graph datasets for pre-training; graph data often noisy or domain-specific
- □ Heterogeneity: Graphs vary greatly (social networks vs. molecules); a single model must handle diverse structures and feature types
- □ No standard distortion metric: Lacking unified measures of structural information loss e.g. δ -hyperbolicity
- Evaluation gaps: Current benchmarks don't fully capture fidelity of structure preservation, complicating fair comparison of methods

Model and Training Challenges

- □ Architectural limits: GNNs struggle with scaling to billionparameter models without losing local detail is unresolved
- ☐ Training paradigms: Unsupervised pre-training objectives for graphs are not as clear or universal as language modeling;
- Efficiency: Graph training doesn't scale easily computing over large graphs or batches of graphs pushes memory and runtime limits
- □ GNN-LLM integration: Combining graph and language model components introduces complexity

Deployment and Trust Challenges

- Lack of "killer app": Needs a high-impact application (analogous to ChatGPT for LLMs) to drive broad adoption and investment
- □ **Domain adaptation:** Foundation graph models may not seamlessly transfer across domains risk of distortion or failure
- □ Trustworthiness: Ensuring fairness, explainability, and robustness in graph models is vital graph embeddings can inherit biases
- Privacy and ethics: Graph data often involve sensitive relationships; using them in large models raises privacy concerns and potential misuse if distortions lead to incorrect inferences

Outlines

- □ I. Recap of Tutorial
 - Low-Distortion GRL Motivation and Key Concept
 - Key Approaches to Reduce Distortion
- □ II. Future Directions
 - Benchmarks for Low-Distortion GRL
 - ☐ Graph Foundation Model (GFM)
 - ☐ Graph Retrieval-Augmented Generation (GraphRAG)
 - ☐ Graph World Model (GWM)
- □ III. Open Challenges and Outlook
- **□ IV. Discussion**

Thank You!

Yuan Haonan @ MAGIC Group

yuanhn@buaa.edu.cn

August 29th, 2025

Towards Low-Distortion Graph Representation Learning

MAGIC Group

August 29th, 2025